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PROBLEMS WITH APPLICATION TO CLAMPED ARCHES

by
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ABSTRACT

A critical analysis is presented of the significance of
the energy criterion for systems that exhibit snap buckling,
The results of energetic analyses are compared to solutions of
the differential equations for the nonlinear behavior of a
clamped low arch subjected to a central concentrated load, The
differential equation analyses include consideration of transi-
tional non-symmetrical buckling modes, The snap buckling of
low arches in the presence of high temperature creep 1s also
considered, Experiments are decscribed on the deformation of

such arches under static and creep conditions,

4 The results in this paper were obtained in the course of
research sponsored by the O0ffice of Naval Research under
Contract Nonr-562(20) with Brown University,
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Principal Symbols

central height of mechanical model; also non-dimenaional
amplituds of symmetrical deflection of arch

non~dimensional amplitude of anti=symmetrical deflection
of arch

width of arch cross section
spring constant
thickness of arch

tangsntial and radial displacements at middle surface
of arch

generalized displacement

cross sectional area; also deflection amplitude
deflection amplitude

Youngt's modulus

force in spring component of the model

total energy of system

HVp°

applied load

energy load (same as "i{ntermediate" or "dead weight"
buckling load)

lower buckling load

upper buckling load

R/EC2LP

length of arms of model

radius of arch centerline

axial force in the arms of the model

angular coordinate for arch (measured from centerline)

half of angle subtended by arch
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imperfection amplitude
deflection of midpoint »f model
strain

a/B

change of curvature of arch
2R/t

stress



Introduction,

The fundamental cause of the large discrepancy between buck-
ling values predicted by the classical eligenvalue theory and exper-
imental results for spherical. and cylindrical shells was shown by
von Karman and Tsien, {1] [2], to be due to the existence of post
buckling stable equilibrium states characterized by loads appreci=
ably lower than the classical buckling load, e.g. ["ig. 1, They
advanced the hypothesis that somehow the shell could jump to these
equilibrium states at loads less than the linear buckling load so
that the lowest load for such states, point 2 of Fig, 1, should be
consldered the minimum load at which buckling was possible, The
question was left open as to how the transition from the initial
state to the buckled state was to take place since, unlike classical
buckllng theory, these are not geometrically adjacent states, They
postulated, however, that the transition may be connected with
geometrical imperfections, small dynamic disturbances or possibly
with unsymmetrical deformations not included in the analyses (3],
The values von Karman and Tsien obtained for the lower buckling
loads in [1] and [2] were in surprisingly good agreement with avail-
able experimental results,

A weakness in the lower buckling load as a realistic buckling
criterion was pointed out by Friedrichs [}, He showed that at the
lower buckling load the system of the shell and the loading is at
a higher energy level in the buckled than in the unbuckled state,
3ince no energy 1s transferred to the system during the jump, but
some may be lost, it can only be expected to jump from a state of

a higher to a state of lower energy level, If no energy is lost



the minimum load at which a jump can take place is then the load at
which the total energy in the buckled and unbuckled states are equal,
Friedrichs called this the intermediate buckling load, He did not
try to explain why or how the jump could take place., Friedrichs
also analyzed the stability of the complete sphere using a boundary
layer treatment and relaxed some unnecessarily restrictive assump-
tions employed by von Karman and Tsien, Friedrichs found that both
the minimum and the intermediate buckling loads were zero in the
boundary layer development for a complete sphere,

Tsien [5,6] attempted to explain the meckanism of snap bucke
ling by introducing additional energy considerations, His energy
criterion stated that under average laboratory or actual service
conditions the most probably equilibriuvm state iz that with Lhe
lowest poscible energy level, In calculating the energy lavels be-
fore and afiar buckling the elasticity of the lording system must
be taken into account, Different buckling loads are therefore pre-
dicted for the same shell with different losding systems by this
theory, For dead loeding the load necessary to cause instahility
1s the same as iriedrich's intermediate buckling load, Tsien's
principle, however, adds the assumption that there always are dis-
turbances of sufficlent magnitudz present to overcome the stability
of the unbucl-led ctate, However, if disturbances of such a magni-
tude are admitted there appears to be no reason why the system
could not junp frrom a state of lower to a state of higher energy,
provided a slable buckled state exists at that load, The lower
buckling load 1s the lowest load for whlch a stable buckled state

exists, and therefore the lowest load for which the system could
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remain 1n/gucklod position if sufficiently disturbed, Below this
load only oscillations about the unbuckled state can take place,
The energy load,as defined in this manner, therefore loses its
original meaning,

Tsien investigated the stability of complete spheres under
hydrostatic pressure and cylindrical shells under axial compression,
and obtained falrly good agreement with experimental results, Al=-
though Tsien'!s results and more recent work using the energy cori-
terion by Lo, Crate and Schwarz [7] gave good agreement with exper-
iments, there are strong objections to its validity and therefore
to its acceptabllity, These objections are well summarized in the
survey paper by Fung and Sechler [8] and are based on the fuzziness
of the theoretical foundation of the energy criterion and especially
the fact that it requires a knowledge of the geometrically removed
post buckling state to determine the onset of buckling, In addi-
tion, the tests of Kaplan and Fung on shells [9] showed little
difference for different loading conditions in opposition to the
theory, Tests on simply supported shallow arches [10] also agreed
well with the upper buckling load values which were appreciably
different from the loads predicted by the energy criterion,

At the present time the trend is away from intultive ap-
proaches such as the energy criterion and attempts are made to solve the
governing differential equations by the use of high speed digital
computers, e,g, Keller and Relss [11], Budiansky [12] and Thurston
[13], There is 1ittle doubt that this approach will eventually
glve most of the required answers since for completely static load=-

ing the buckling load must be a peak point of the appropriate load
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deflection curve, Such curves are, however, extremely difficult

to obtain since they should incorporate initial deflections of the
shell, the appropriate stresses and deformations that exist in the
pre-buckling state and, above all, must include the correct mode
into which the shell would initially buckle, Aside from the basic
problems assoclated with handling nonlinear problems, additional
complications arise when the important initial deflections are not
necessarily those having the form of the buckled shape,and when
transitional buckling modes appear that may also be appreciably
different from both the initial and the final shapes, The formula-
tion and numerical solution of nonlinear problems of this generality
still presents formidable obstacles,

Because of the difficulties mentioned above in contrast to
the simplicities offered by an energy approach, the authors have
felt it worthwhile to reexamine the theoretical basis of the energy
criterion, Its relative simplicity makes it particularly attractive
for problems in which additional complicating features such as
anlsotropy, inhomogeneity, and combined loadings appear, In the
following discussion the term "energy load" or "energy criterion"
will be restricted to mean Friedrich'!s intermedliate load or, alter-
natively, Tslen's "dead weight" energy load,

The first part of this paper is devoted to an analysis of
the significance of the energy load for systems having force de=-
flection characteristics of the form shown in Fig, 1, The general
discussion 1is preceded by a complete analysis of a simple mechani-
cal model which has such a load deflection curve, The discussion

itself is completely general and is not restricted to arch and shell
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structures - the arguments may be relevant to other systems which
experience similar behavior,

The second part of this paper is devoted to comparing the
results of the energy approach with those of more thorough theore-
tical analyses of low arches, A subsequent paper will investigate
the energy oriterion in relation to the behavior of clamped

spherical caps and complete spherical shells,

A fairly complete theoretical and experimental analysis of
clamped shallow arches is performed, The theoretical work includes
consideration of a number of symmetrical deflection modes as well
as transitional non-symmetrical buckling, The experiments on arches
produced buckling load values and complete load deflection curves
which included the unstable transition region, The agreement be-
tween theory and experiment was fairly good,

The energy load computed on the basis of ideal geometry and
axially s:mmetrical buckling is shown to be a lower bound for snap
buckling for systems influenced by non-symmetrical transitional
buckling modes, For a particular class of systems, the energy load
1s also found to be unaffected by certain forms of initial imper-
fections and to be a lower bound for snap buckling in the presence
of those imperfections, The systems and imperfectioni are restrict-
ed to those for which the load deflection curve with and without
the inclusion of imperfections is anti-symmetrical about a common
straight line through the origin, Although only few structural
systems fall into this class, e,g., clamped arches, the actual
behavior of spherical caps and presumably other systems is close to

being the same, The energy load 1s found to be relatively



insensitive to arbitrarily chosen buckling modes, In sddition, both
the theoretical and experimental results for arches ard spherical
caps show that the difference between the energy load and the upper
buckling load diminishes the more the system is influenced by
non=-symmetrical transitional modes and by destabilizing initial

imperfections,

Model for Snap Buckling,

To gain a better understanding of some of the concepts
mentioned in the introduction, as well as to introduce some new
ones, a simple mechanical model will first be investigated, The
bar spring system shown in Fig, 2 has many important features in
common with a low arch and a shallow cap, The model is considered
as hinged in the middle and at the ends, and subjected to a single
load P at the apex, The discussion will be limited to a low frame,
that is one for which

(a/L)<< 1 (1)

where a is the unstrained height and 2L is the width of the frame,

From the geometry the equilibrium equation is immediately obtained:
P= kb + 2T(a=3)/L (2)

where b 13 the vertical displacement of the apex, k the spring
stiffness and T the compressive force in the arms, Also from

geometry the straln in the arms is

e = 5(b~2a)/2L° (3)



From Hook's law the force in the arms is therefore
T = - (AE/212)8(b~ 2a) ()

where AE 1s the stiffness of the arms, Substituting for T in the
equilibrium equation (2) ylelds the load deflection relation of
the model

P= kb + (AE/L3)5(d-a) (bd-2a) (5)

This is plotted in Fig, 3,

The curve can be consldered as composed of two parts, a
straight line caused by the spring stiffness k, and a curve anti-
symmetrical about & = a, According to the classical criterion
instabllity occurs when the first maximum is reached or at the
point A in Fig, 3, This is usually called a limit or critical
point, In contrast to most buckling problems instability is not
caused by a bifurgation of the equilibrium state but by the load
reaching a maximum, The lower buckling load of von Karman and
Tsien would correspond to the minimum point or point B in Fig, 3,

Both these points are obtained by setting
$=0 (6)
By substitution from (5), this ylields
b= a+ (a%/3)-(k13/3aE) 1% (1)

The plus sign is clearly associated with the lower buckling load
and the negative with the limit point or the upper buckling load,
These two loads will coincide in a point of inflection with a



horizontal tangent at d = a when the quantity under the root is
zero, If the root is imaginary the load deflection curve will be
continually rising and always stable, Ior instability to be possi=-

ble therefore
(a2 AB/kL3) >1 (8)

The intermediate buckling load or the energy load as defined
by Friedrichs, or by Tsien for a dead load, can be determined most
easily from the geometry of the load deflection curve, At the
energy load the total energy in the buckled and unbuckled states
are equal, or the change in energy from one to the other is zero,
In Filg, 4 the decrease in potential energy of the load in going
from the unbuckled to the buckled state is given by the rectangle
ABCD, The increase in straln energy of the spring and the arms is
glven by the area under the load deflection curve between B and C,
The change in total energy will then be gilven by the difference
between these two areas, At the energy load, the two areas must
be equal, Irom the symmetry of the curve it 1s seen that this
occurs when the 1line BC passes through the crossing point of the
straight line due to the spring and the curve due to the effect of

the arms, The energy load is therefore
P = ka (9)

This is a function of the spring stiffness and the geometry but 1s
independent of the properties of the arms, This is quite remarka-
ble and shows that imperfections thathave the effect of reducing

the stiffness of the arms only will leave the energy load unchanged,



The energy load will cease to exist when the curve is reduced to
one with a point of inflection with a horizontal tangent, The
upper, lower and energy load would then be equal, If imperfections
of the arms are sufficliently large, the energy load may cease to
exist, but in that case instability would not occur either, Con-
slderation o: imperfections of the arums oanly would result in the
enerry load beine a lower bound on tne loads that can cause
instability, This 1s true regardless of the magnitude of the Im~
perfections, It may be objected that the height "a" of the model
enters into the expression for the energy load, Varlations in "a"
however, should not be considered to be imperfections in the usual
sense of buckling problems but as changes in overall geometry,
The same could be sald about the length of a strut in ordinary
Euler buckling)i.e. imperfections are considered to be deviations
from straightness and not changes in the length, In the general
class of nonlinear problems under consideration, however, more
attention must be given to the definition of geometric "imperfec=-
tions",

As an example of an imperfection, the arms can be considered
to have a sinusoidal centerline with amplitude a , The shortening

e of one of the arms subjected to the compressive force T is then:

2 2 2
T pL TL
= -E-[ ) 4 10
° T-(n°EI/L°) AE (20)

This rust be equal to the shortening of the arms as caused by the
lowering of the apex of the model,
Then from Eq, (3),
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2 2
“-L— + % (11)

(2a=p) = ?[ 1
(2 T-(':tzEI/LZ)]

From the equilibrium equation (2) the value of T can be substituted

to glve the load deflection curve

-

22 2

2
(P=kd)/(a=b) l P=k3)L° d(2a~-d) _
i . Mty Mgl =0 02)

[(P-kb)/(a- b)J=2 fEI/LEJ

This 1is plotted in Fig, 5 for different values of y , It can be
seen that the upper buckling load is reduced by vy increasing where-
as the energy load remains unchanged,

If the possibility of the arms buckling 1s admitted a dif-
ferent mode of instablility 1s added, Let

1, = PEI/L2 (13)

be the Tuler load o0.” the arms, For

T < TE

the load deflection curve is still given by (5), but when T = T,
it 1a given by substituting for T from (13) in the equilibrium

equation (2), This ylelds
P=kb + (27PE1/13) (a=d) (1y4)

which is a straight line passing through P = ka and d = a as shown
in Fig, 6, Instability will now occur when the force in the arms
becomes TE or at the point B in the figure provided the slope of
the line BC 1s negative or zero, 1If the slope is positive the

load deflectlion curve will be continually rising and stable for
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all loads, From Fig, 6 it 1s seen that the slope becomes positive
when the column buckling load Rr is less than the energy
load Pe‘ The energy load is therefore again the dividing point
between stability and instability if the possibility of transi-
tional buckling modes iz admitted, The energy load is therefore
also in this sense a lower bound on the snap buckling load of the
complete system,

From the discussion of the model it 1s seen that the energy
load calculated on the basis of perfect geometry and the basioc
deformation mode is a lower bound on the snap=buckling load in
the presence of imperfections or additional transitional modes, It
is of interest to see if this interpretation of the energy load is

true only for this particular model or if it is true for more

general classes of systems,

Influence of Transitional Buckling and Imperfections in Systems
at nap Buckling.

For systems having load deflection curves similar to Fig,1l
in the absence of both transitional buckling modes and initial im=
perfections, the problem is to determine the changes those factors
could have on the basic curve and the relevancy, 1f any, of the
energy criterion, The nature of admissible load deflection curves
for transitional buckling modes will first be examined, Transi-
tional buckling refers to the case where the mode of the inter-
mediate unstable equilibrium states is essentially different from
both the initial state and the final buckled state, Examples of
transitional buckling are column buckling of the model previously

discussed and anti-symmetrical buckling of simply supported arches
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which was investigated by Marguerre [1ll4] and is discussed in [3].
The basic systein under discussion will be assumed to have
only one palr of stable initial and final equilibrium states in

the load range P, < P < By a8 indicated by the curves OA and BC

L
respectively in Fig, 7., Load deflection curves that cross over
themselves will be ruled out, The overall (or average) behavior

of most structural elements that exhiblt snap buckling would have
equilibrium characteristics similar to Fig, 7. The relevant
question for transitional buckling 12 the nature of possible un-
stable equilibrium paths connecting the two stable branches, Alter-
natively, the problem is the determination of admissible paths

connecting the two stable states that do not require any input or

release of kinetic energy,

In discussing snap buckling of a system with many degrees
of freedom it is necessary to introduce some characteristic dis-
placement function in order to describe the geometric dependence,
The function that appears to be an appropriate and consistent in-
dlicator of the gross behavior is the one that appears in the ex=~
pression for the work done by the external force system (the
generalized displacement), For the case of a concentrated force
this would be the actual displacement at the point of application
and in the direction of the applied force, For hydrostatic pres=~
sure 1t would be the change in volume, The integrated average
displacement used as the geometric reference by Budiansky [12] is,
to first order terms, equivalent to a volume change, The general=-

ized displacement from the work expression will be used as the
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geometric reference parameter in the following general discussions
and in the particular examples,

The elastic strain energy U of the system is assumed to be
completely defined in the unbuckled and buckled stable equilibrium
states,The work done by the external force system P during a small
change 1n the generalized displacement v is Pdv, In the abssnce
of kinetic energy this must be equal to the change of s.rein energy

during the same process,
du = Pdv (15)

If the total potential energy H defined as

is introduced, then
di = dU - Pdv -~ vdP
and from (15)
dH = -~ vaP (16)

From the definition of the total energy it is seen that it is
also completely defined in the unbuckled and buckled stable equi-
librium states, Integrating (16) along a path connecting two

such states a and b gives

vaPp (17)



1y

where the integral depends upon the path, This integral can be
interpretated graphically as the area between the path and the P
axis, This area must therefore be the same for all paths between
the states a and b if no klnetlic energy is involved, At the
energy load, Pe’ in particular, H, = H,, and setting a =1, b = 2
to correspend to the points in Flg. 7,

2
fvdP =0 (18)
1

and the area 1s therefore zero, This is the same criterion that
was used to determine the energy load for the model, Some equili-
brium curves that would satisfy (18) are shown in Fig, 7 by the
dashed 1ines, Portions of these curves, except the straight line,
would be stable equilibrium states aside from OA and BC and must
therefore be excluded, The straight horizontal line is therefore
the only possible completely unstable or neutral equilibrium path
connecting the unbuckled and buckled states at the energy load,
Starting from above the energy load, possible unstable
equilibrium rmust be simllar to the curve 3-4 in Fig, 7. Since
the portion of the curve 1-3=5--2 can be considered as a path
connecting 1 and 2 for which (18) holds, it follows that the area
enclosed by 1l-3=5 must be equal to(minus)the area enclosed by
5=4=2, The path 3=l4 must also be monotonically decreasing to
satisfy the condition that it be a locus of unstable or neutral
equilibrium states, Starting from points below the energy load,
no path satisfying the requirements can be found, The energy load

1s therefore the minimum load from which unstable equilibrium
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paths could start, i,e, it s the minimum load for which a bifurca=
tion of equilibrium due to the occurrence of other modes would
lead to snap buckling of the system,

Some other general statements follow almost direectly, For
a system with a load deflection curve of the type shown in Fig, 1
the energy load must lie between the upper and lower buckling loads
since the two shaded areas must be equal, The three critical loads
are equal when the load deflection curve has a point of inflection
with a horizontal slope, It is also seen that for the same load
the total energy H along BC (Fig, 7) 1s less than H along OA for
P> Po’ Since BC is the locus of stable equillibrium states, the
potential energy in adjacent non-equilibrium states (at the same
load) must be greater than for points on BC, The energy load Pe
can therefore be defined as the winimum load for which the total
potential energies are equal in the unbuckled state (along OA) and
in any arbitrary buckled state whether or not it is an equilibrium
state, The buckled state that gives the true minimum must, of
course, be the equilibrium state 2, This variational formulation
for calculating the energy load may be useful since it does not
require the prior determination of the buckled equilibrium states
BC. The energy load determined by such a variational procedure
would be an upper bound if the initial state along OA is exact and
the buckled state is approximated, and would be a lower bound on
the real energy load if the reverse were true,

The role of iwmperfections in nonlinear systems is a much
more difficult problem, Part of the difficulty is due to the

vagueness of any definition of "imperfections" other than any
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arbitrary deviation from the pre-assumed "ideal" geometry that
satisfies the geometric boundary conditions, It is not surprising
that "imperfections'" can have vastly different effects according
to their manner of introduction in a specific problen,

In linear buckling problems, imperfections are generally
taken to mean the deviations from the idealized geometry that in-
fluence the destabilizing (or stabilizing) role of the membrane
stresses, This same concept 1s usually used in nonlinear problems
in the sense that the terms due to the imperfections appear only
in expressions for the membrane energy or in conjunction with mem-
brane stresses in the differential equations, The imperfections
do, however, influence the complete problem since the membrane
and bending stresses and the displacements are all coupled in a
nonlinear problem,

The imperfections considered in the analysis of the model
were deviations from straightness of the arms and therefore had
the same mode as that corresponding to transitional buckling,

The energy load was found to be unchanged and to be a lower bound
for snap buckling in the presence of these imperfections, Another
kind of 1mperfection in the model problem would be a change in the
height of the apex which would correspond to a change in the basic
geometry and therefore in the energy load, It is convenient to
designate these two basically different types of imperfections as
A and B respectively for reference in discussing more complicated
systems,

The general conditions reqrired for imperfections to be of

type A are of particular interest since the energy criterion then
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has a definite physical interpretation, Ve shall consider systems
for which the resistance to deformation can be subdivided into
"bending" and "membrane" contributions and where the membrane
stresses are symmetrical in the stress - generalized displacement
plane with respect to a particular displacement value, This char-
acteristic 1s shown in Fig, 8 where the stress deflection rela-
tionships are assumed to be symmetrical about the vertical line A=A,
The strain energy of the membrane stresses is a quadratic function
of the stresses and would therefore have the general form shown in
Fig. 9. It would also be symmetric about A-A, The membrane stress
contribution to the load deflection curve would then be anti-sym-
metric about A-A, since that curve is obtained by differentiating
the potential energy with respect to the generalized deflection v ,
In nonlinear structural systems the terms corresponding to the
bending resistance are generally linear in the displacements, The
complete load deflection curve would then have the same form as
that for the model, Fig, 3,

If the inclusion of geometric imperfections into the problem
only alters the magnitude of the membrane stresses but does not
change the bending contribution or the basic symmetry, then the
energy load must remain unchanged, A sufficient, and seemingly
necessary, condition that the energy load remain unchanged in the
presence of geometric imperfections 1s, therefore, that the membrane
stresses for the perfect system are all symmetrical about a common
generalized displacement value,and that the only effect of the im=
perfections considered 1s to change the magnitudes of those membrane

stresses without altering the symmetry, A further consequence of
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these conditions is that, as was shown in the case of the model,
the energy load would also be a lower bound on snap buckling in

the presence of the imperfections, The imperfections would then
be of type A discussed previously,

It does not seem possible, however, to determine a priori
whether a given structural system and arbitrarily chosen imperfec-
tion functions will behave in the above manner, 1In the subsequent
analyses it 1s found that the behavior of the symmetrically loaded
clamped arch does sonform with the stated conditions, For the
clamped arch anti-symmetrical imperfections are found to be of
type A (the transitional buckling mode is also anti-symmetrical),
while symmetrical imperfections are of type B, The clamped spheri-
cal cap, on the other hand, does not possess the required symmetry
properties of the membrane stresses, so that it caunot admit im-
perfections strictly of the A type, The symmetrical imperfections
considered by Budiansky in [12] for the cap appear to have proper-
ties similar to those of type B,

Cylindrical shells also do not appear to have the properties
required for a class of imperfections to be strictly of type A,

It is Interesting to note, however, that the results of (15, 16]
approximate the expected results for imperfections of type A, The
upper buckling load for the largest imperfection parameter that
shows snap buckling is reasonably close to the energy load of the
perfect shell,

Although the energy criterion does not maintain any definite
physical meaning in the presence of imperfections of type B, which

can be related to changes in the overall geometry, it can
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serve as a measure of the gross influence of these imperfections
on the nonlinear behavior of the system, The change in the energy
load due to those imperfections would be an indication of the sen-
sitivity of the system to the geometry changes, This viewpoint is
of some practical interest since the computation of the energy
load is considerably simpler than the complete solution of the non-
linear differential equations, This would be particularly true

in problems where the mode of senaitive imperfections of type B
are essentlally different from either the transitional or final
buckled modes, e.g, axi-symmetrical imperfections in cylinder
buckling problems,

%nalyals of a Clamped Low Arch Subjected to a Central Concentrated
oad

The clamped low arch was chosen as a specific structural
system to examine the general results of the preceding section,
Although the simply supported arch has been thoroughly investi-
gated by Fung and Kaplan [10] and by Biezeno and Grammel [17], the
clamped condition initially appeared to offer more basic compli=-
cating features, In nonlinear problems particularly, a change in
the boundary conditions can often alter the complete nature of the
problem, The anticipated difficulties did not, in fact, materi-
alizé in this instance, The problem of the clamped arch, however,
besides being of some practical interest, does serve as a very
good example to discuss the significance of the energy load in
relation to the upper buckling load, geometric imperfections, tran-
sitional buckling modes, and varying degree of approximation of

solutlons, The clamped arch problem also contains a number of
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similarities to that of the uniformly loaded spherical cap, The
trend of results of the arch problem serves as a good indicator
of the behavior of the latter more complicated structure,

From the experimental side it is possible to obtain better
control with fully clamped end conditions, This is especially
true at high temperatures where binding at the supports would be
a problem,and an important part of the general program was the
investigation of snap buckling due to high temperature creep.
The elastic buckling experiments, which were performed at room
temperature, were concerned with obtaining complete load deflec~-
tion curves, including the unstable regions, for a wide range

of arch geometries,

(a) General Formulation,

The circular clamped arch loaded with a single central con-
centrated load as shown in Fig, 10 is analyzed, With the usual

assumption for thin curved beams, the axial strain € is
= 2 2
e = (1/R) (ug =~ w) + (1/2R%) (wg) (19)
and x%,the change in curvature is
= 2
x = (1/R%)wgq (20)

where u is the tangential and w the radial displacement function,
R 1s the radlus of the arch,and a is the polar angle measured
from the center of the arch, Differentiation with respect to
a 1s denoted by the subscript a« ,

The strain energy due to the axial deformations,6 non-

dimensionalized by division by the factor LtfR, 1is
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B 2
U, = (1/2) [€da (21)
-p
and that due to bending 1is
P
U, = (t</24) J ¥2da (22)
-B

where t is the thickness and £ ' the width of the beam, E 18
Young's modulus and B half the included angle of the arch, The
change in potentlal energy of the load, in non-dimensional form,

is given by

Uy = - [P/ERE)(W),_ 4 (23)

where P is the concentrated central load, The total energy H is

given by

H=Um+Ub+Up (24)

The tangential displacement function u can be eliminated
from the energy expression, The variation of the total energy H
with respect to u must be zero for equilibrium, Since u only
appears in Um’ the membrane strain energy, this yields immediately
Eq = 0
or

e =C (25)

where C 18 a constant, Substituting in (25) from the strain dis=-

placement relation (19) and rearranging
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ug = w = (L/2R) (w )% + R

Integrating between a = B and a = =f gives

BB , .
(ul = [w-(l/ZR)(wa) lda + {CRa])

~Bp =B -p
The boundary conditions on u are

u=0ata=+98 (26)

The left hand side 1s therefore zero, Solviwnm the rcmairnder for

the constant C which, from (25) is egqnal to €, ylelds

B
e = - (1/280) {u-(1/2R) (wy}”)da (27)
..|3
Substituting this value fcr into the energy expression

(24), and for x from (20), pives the total energy E as a function
of w only

-8 (28)

where the brackasts in (wa)2 end (wa,:)2 are left out, In the
followinr when thils is dcne it will ulways mean that the differ;
entlation is performsd first,
(b) Approximate Solut!on

A first numericel approximation can now be obtained by

assuming a function for w, Let

W= Awy(E) + B w,(E) (29)
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where L 18 a symmetric and W, an anti-symmetric function in § ,
£ 1s the ratio o/P and A and B are the amplitude of the two
deflected shapes, Substituting this value w in the energy ex-

pression gives

H= (1/!4325)[,81\01 + BBC, - (1/2RP) (,'x.ac3 + 2ABC,+ + 132<:5)]2

+ (t2/24r4g3) (a%c, + 2aBc, + BPcg) = (B/EGRE) (ACG + BCyq)

2
(30)
where the constants are given by the integrals
1 1
0, = | wydg c, = [ wyak
- -1
1 » 1
Gy = f"lgd‘ 6, = [ wignagd®
-1 -1
b 2 i 2
Cg = [ w2t 6 = | weat (31)
-1 -l
1 1 5
G = {"155"2:5“5 % = .["2!:& ot
Cq = [wq] Cyn = [W5]
9 1E= 0 10 2€= 0

Introducing non-dimensional amplitudes

a = (A/RB?) b = (B/REP) (32)
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and load

p* = (PR/ELZ£B) (33)
and a geometric parameter

A\ = (B%R/t) (34)

the energy can be written as

B = Hx/B5 = (ML) [aC; + bC, -(1/2) (a203 + 2abcLL + b205)]2

+ (1/24\) (aPc, + 2abe, + b2cg) = P*(aCq + bCyq) (35)

6 7

Becaise of the symmetry and anti-symmetry of vy and L it -

can be seen immediately that
The energy H* therefore reduces to

B = (MB)[agy - (1/2)(a%; + bPc ) 1%+ (1/20) (a%c, + bPcg)-Fracy
(36)

For equilibrium:
oH _

3H"_
B-E—o BS—O
From the above this ylelds
p*cg = (x/g)[acl- (1/2)(a203 + bzcs)](cl-c3a) + (1/12K)(ac6) (37)

(bCA/2)[aC; - (1/2)(&203 + bZCS)] - (1/12\)bCg = 0 (38)

The last equation has the solutions

b=0 (39)
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b= (2/Cg)[ac, - (a2c3/2) - (ce/ex’-'cs)] % (40)

If the quantity under the root is negative, the only real solution
is b = 0, The deformation will then by symmetrical, The condi=-
tion that a real solution for b exists other than b = 0 is there-
fore that

acy = (s20,/2) - (Cg/6)°Cg) 2 O
Which, when solved for a, gives
8 > (C,/Cy) = [(6,/0)2 = (Cg/3¢,CcN)1E (1)
2 (6y/¢q) = [(€1/C3)" = (Cg/3C40g
2 2,.%
a8 < (0,/C4) + [(Cy/04)° = (Cg/3C;05X7)] (42)

For "a" real, these relations will be satisfied over a finite
interval if the quantity in the root is greater than zero, The
necessary condition, therefore, that the anti-symmetrioc component

be non zero 1s that
N2 > ©40q/30,%¢cc (43)

If condition (43) 1s not satisfied the load deflection
curve is obtained by setting b = 0 in the equilibrium equation
(37) thereby obtaining

P* = (Cg/12Co\)a + (C3MUCg)ala =(Cy/Cy) kan(20,/05)] (k)

Such a curve is plotted in Fig, 11, It can be considered to be
composed of a straight line due to the bending stress, and to a

curve antisymmetrical about a = Cl/C3 due to the axial stress,
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This 1s exactly the same kind of curve as was obtained for the
model, The energy load can therefore be obtained from inspection

as
P*e = (1/12\) (6,0¢/C4Cq) (45)

The range of stability can be found from the second varia-
tion of the energy, Substituting b = 0 into the total energy (36)
and differentiating twice with respect to a ylelds

°g"

- 2 242 ,
-2l (\/2)[Cy-aCy)® = aCyCy + (a%03/2)] + (G/12 ) (L6)

For stability, this second variation must be greater or equal to

zero, Solving for a gives

a < (6/0y) - 1(1/3)(ey /0502 - (ce/9 ¢y2a8)1 (47)
or

8 2 (6/0y) + [(1/3(0,/65)2 = (Gg/9 0,200 (L8)

These portions of the curve are, of course, the portions
with a positive slope in Kig, 11, The region of the load defleoc~
tion curve that is unstable vanishes when the quantity under the
root in (47) and (48) becomes zero, An unstable region will

therefore exist for
A2 > 0g/36,° (49)

and instability will occur after the equality sign in (47) is satis-
fied, Substituting this value for a into the load deflection

relation (U4lt) gives the upper buckling load for the symmetrical
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mode,
G+ C A\ .C. 2 o0 3/2
v TITR 2%3 3T 9c§>?

If the inequality (43) 1is satisfied, b is not identically
zero but is given by the expression (40) in the interval given by
(41) and (42), Substituting for b from (40) into (37) ylelds the
load deflection relation in this interval,

P* = (C,Cq/12\CgCq) [(C1/Cy) = a] + (1/12h)(Cga/Cq)  (51)

This is a straight line passing through the energy load Pt = P'
and a = 01/03. The total load deflection curve will be then be
given by (4l4) except for the values of a in the interval (41)

and (42) where it will be given by (51), This is plotted in Fig,ll,
The value of a at which the non-symmetrical transition mode comes
in, a;, 1s obtained from the equal sign in the inequality (41),
However, buckling may already have taken place in the symmetrical

mode before this value of a is reached, The condition for buckling

in the non-symmetrical mode must be

&y £ 8y
where a; is the deflection at the upper buckling load (}ig, 1l),
Substituting for &y and aj from (47) and (41), upon meking both

of these inequalities into equalities, glves for aj < ay,
2 3 (30,Cg-CxC, )/60,%C (52)
< 2737876 L S

The behavior of the arch for different values of A\ is
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summarized in Fig, 12, The non-symmetrical buckling load P; is
obtained by substituting for a in (l4ly) from the equality condi-
tion of (L4l1)
C 2 c ]

3 1 8

P = -53-6- - ) (53)

T 5% 7’3 3 30,0

The stablility of the anti-symmetrical mode can be deter=

mined from the slope of the load deflection relation (51), This

slope is
3

£ = (1/120)[-(¢;0g/CeCq) + (64/Cq)]
which 18 negative, and hence unstable, for

The first term in (53) is the energy load (45), and therefore
from (54) and (53) the anti-symmetrical mode will be unstable

when
3t 3t
5r >’Pe

This result concurs with the general conclusion obtained in the
previous section,

(c) Determination of Buckling Loads by Classical Eigenvalue
Theory.

The instability of the arch can also be approached by con-

siderinz small displacements about an equilibrium position as in
the classical eigenvalue formulation, The buckling load is deter-
mined in this procedure as the load for which geometrically adja-

cent equilibrium states could exist in addition to the original
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state at the same load, Both the upper buckling load PU and the
load for the onset of transitional buckling PT can be determined
by this method,

Denoting the initlal state by superscript o and the buckling
displacements and strain by superscript ! , the change in strain
energy during buckling is

2 4 2¢1e%)da

=
"

(e?

L = (1/2)

™™

=
n

p
§ = (£%/24) [(x1? + 2x%%1)aa (55)
-p

(=]
-
n

-(P/EtRf) ([w? o= 0

For equilibrium in the buckled state, the varlation of the
total energy must be zero, The variation with respect to the

tangentlal buckling displacement u! gives simply

eh =0

or by integration

AN (56)

The buckling strain, which 1s the difference between the
final strain and the strain in the unbuckled state, is therefore
a constant, From the definition of the buckling strain, the re=-

lation between that strain and the displacements is

e = (L/R)(ud = wt) + (1/28%)(wi? + 2udu1 ) = G (57)
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which, upon solving for u&, gives
2 )
- 1 ' '
u& = w! (1/2R)(wa + 2w wu) + C'R (58)

Integrating between a = B and a = «f and utilizing the clamped

boundary conditions (u = 0) ylelds

B
¢t = -(1/28B) [ [w! -(1/2R) (W12 + 2wy ))em (59)

=B

Substituting this value for C' into (56),the change in energy due

to buckling can be written as

B 2
H! = (l/hﬂzﬂ) \r[w' -(1/2R)(w&2 + 2w°w& )]dql

» o

B B p
+ (t2/24R%) [(wg, 1240 - [((e%/2RB) [(w1=(1/2R) (wyr2wde )] aa}aa
-8 =Bl -p
+ (£2/128%) r‘u"u:m da - (B/EtRE) (w'), . (60)

Because the initial state is an equilibrium state all the
linear terms in w must cancel out either algebraically or due to
boundary conditions, If it is assumed in addition that w is suffi-
ciently small so that terms of higher order than second can be
neglected (in accordance with the basic assumption of classical

buckling theory), then the energy change is reduced to
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s h B
" 2
g B = /4R [Tt - (/RIgutgllasl” + (s2/218%) [wif aa
.‘p _J _\B
l ) B
+ (1/2R%) ¢° \fw&?da (61)
-B

The pre=buckling strain e° can be taken outside the integral since

it 1s a constant, Assiume that

wl == Aly, + Bty

1 2

where L 1s a symmetric furction in a and Wo is anti-symmetric,
The functions Wy and W, are therefore orthogonal in the interval

- -B<a < B . Substituting into the energy expression (61) gives

8 2
H' = (1/4R°D) | [A'W, + Bly, = tl/R)mo(A'wla + B'w,,)]da

A\

- B B
N + (tz/zun“)‘f[A'wlaa+ B'waoc]adc +'(1/232)s°\f(A'w1a+ B'w2a)zda

ol -g (62)

Because of the orthogoneslity proverties, this reduces to

-~

B
Y = As21(1/unas)[zf(w1 - (1/R)w§w1a)da]2
-B

[

2 2, B
Wy ggda * (e°/2r )gfwl da .

a
B 3
2 (.2 4 P 2 0/l P 2 “L
+ B4 (£°/24RY) \JWZGadu + (£%/28%) erQ da, (63)
; .:B J

B
[ 2
J
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For equilibrium in the buckled state

oH' _ dH!
Each of the two expressions in parentheses in (63) must therefore
be zero,

From the second,

p B
e =. (t2/12R2)~fw2§ad7/<rw2§da (64)
-p -B
or, if written in terms of L= q/B,
1
e = - (tz/IZRZBZ) }wzgzéﬁ//;wzédﬁ (65)
-1 -1

This gives the strain in the arch when the non-symmetric
mode buckling load is reached, From the form of the expression
(65) it is seen that the stress is equal to the second mode Euler
load of a clamped column of the same length as the arch, By
substituting from (27) for €° the deflection at buckling can be

obtained

B 1 1
(1/288) | (wo=(1/2R)wSP)da = (42/128%p%) [wzggdi// WogdE  (66)
-B -1 / -1
Assuming that wo = Awl(E) and introducing the non-dimen-~

sional amplitude a defined in (32), and the parameter N defined

by (34) the above expression becomes



1 1 1
o lef:dg - 20 [war + (1/32%) '[waézdz/ [wogag = o
-1 -1 -1

Upon substituting for the integrals from (31),

32 - (ZCla/C3) + (08/3k20305) =0

33

This is the same condition as obtained previously, (41), for the

amplitude & at which the transitional mode aprears, .

The first equilibrium equation, obtalned by setting the

variation of H!', (63), with respect to A'equal to zero, can be

written, using (27) for €ys

3
: 2
(1/2B){;f[w1 - (l/R)wgwla]da + (t2/12R2wa1iada
-B -

S

- (1/28R) fE[vﬁ - (1/za)w‘;2]dq {f;"li da} = 0 (67)

—

Agaln assuming that wo = Aw1 the equation becomes

ada

B 2 p
(1/20)4 [luy - (A/R)w 2laa} + (tz/lanz)fwla da

B -B

-

- (1/2Rp) [F[Awl - (A2/2R)w12]d{} walzda: 0
a (0 8

&

-

Using the previous notation, this equation reduces to

a® = (20,8/05) + (2/3)(0y/¢5)% + (Gg/NPe,%) = 0

(68)
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which 18 the same condition as obtained previously for the deflec~
tion ay at the upper buckling load (47), The strain at which this
occurs can then be determined from (27), The corresponding load
PU can be obtained by setting a = ay in the load deflection rela-
tion which would be 1dentical to (L4l).

This analysis shows that although the problem 1s basically
a nonlinear one, both the upper buckling load for symmetrical
buckling and the non-symmetrical transitional buckling load can
be determined by the classical eigenvalue procedure, The essential
difference between this problem and the standard ones is that non-
linear strain displacement relations must be used in describing

the pre-buckling states,

(d) Analysis of a Geometrically Imperfect Clamped Arch,

It is of interest to compare the behavior of the clamped
arch with initial imperfections with the observations in the
preceding general discussion, It will be assumed that the devia-~
tions from the perfect circular shape are given by the functions

w® and u°. The elastic membrane strain can then be written as

e = (1/R)(yg = w) + (1/2R%) (w2 + 2ugud) (69)

and the change in curvature, as before, is given by (20), The
energy expressions (21) (22) and (23) still hold, By varying the
total energy with respect to the displacement u, as previously,

the axial straln 1s found to have a constant value given by

B
e =~ (1/2RB) \g[w - (1/2R)(w§ + 2wawg)]da (70)
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and therefore the total energy can be expressed as

B 2
H = (1/4R°B) [lw=(1/2R) (w] + ZWGWZ)]dG} + (62/245%) [w8 da
“B

- (P/BtRf) (W), _ 4 (71)

It 1s assumed that w is given by (29) and the initial imperfections
by w® = le(z) + Ewa(E) where LY and W, are the same functions

as in (29)., The total energy can then be written as

= (x/u){acl + bC, - (1/2)(9.203 + 2abC) + bzcs)

"]2

- [adc3 + (vd + ae)cu + bec5]f
+ (1/240) (a%cg + 2abC, + bZCB) - P*(acy + bO ) (72)

where the quantities a,b,d,e are non-dimensional amplitudes obtained
by dividing the corresponding capitalized quantities by the factor

RBZ,G.E. (32)0
Because of the orthogonality of the functions W, and w,,

02 = Ch = 07 = ClO =0
H* therefore can be reduced to

0t = Ox/h)[acl-(l/E)(azc3 + b205) - (adCy + becs)]z

+ (1/240) (a%c, + b0g) = Pracq (73)

3¢ 3
For equilibrium, S5 = 0, §f = o,
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which results in the following two equations:

3

Ploy = (x/z)[acl-(l/a)(azc3 + bzcs)-(adc3 + beCy)] (0 ~aCy-dCy)

3

+ (1/12\)(acy) (74)
(\/2)[a0,~(1/2)a%Cy + b2Cg)-(adCy + beCg)1[bCy + eCc]
- (1/12\)pcg = 0 (75)

Unlike the corresponding equation for the geometrically
perfect system, (38), b = 0 18 no longer a solution, The deform-
ations in the anti-symmetrical mode therefore commences immediately
at the onset of loading,

Upon changing the origin in the load deflection plane by

the transformation
a' = a - [(01/03) - d] (76)

the two equilibrium equations (74) and (75) can be rewritten
I~ r -
3 - . 2 21 2
P'Cy = = (A/a)i(CB/Z){[(Cl/C3)-d] -a* o [(b c5/2) + beGc) atCy

J

+ (Cg/12N[a! + (Cy/Cy)-a] (77)

B g L 7]
' { ' 2 2 2 . ‘
(x/2)|(c3/2)j[(cl/c3)-dl -a! J-[(b C5/2) + beCy]

(b+e)Cs - (bCg/12N) = 0 (78)



37

From (78) it is seen that the amplitude of the anti-
symetric mode b is independent of the sign of a', i,e, b is
symetric about a' = 0, The load deflection relation (77) consists
of a membrane contribution (the quantity containing \) and a bend-
ing part (containing 1/\), The bending term is linear in a' where-
as the membrane term is/:ubic in a'/’?giggti-symmetrlcal about and
passes through a'! = 0, The load deflection curve is therefore com-

posed of a straight line, and a curve anti-symmetrical about

a = [(01/03)-d]. The energy load is therefore given by

P: = (Cg/120Cg) [ (Cy/Cq)=d] (79)

If the initial imperfections are anti-symmetrical, d = O, and the
energy load is the same as for the geometrically perfect arch (45),
The behavior of the clamped arch is therefore similar to
that of the model in that the behavior in the presence of anti-
symmetrical imperfections is identical to the type A imperfection
of the model, Symmetrical imperfections of the arch would be of
type B and correspond to a change in the overall geometry and
would result in a change (lowering) of the energy load as noted
in (79).

(e) More Exact Solution of the Nonlinear Deformations of the
ETamgea ArcE.

A better approximation to the load deflection relations and
to the buckling loads of the arch can be obtained by including more
terms in the expréssion for the deflected shape, Symmetrical
deformations will first be considered, The deflected shape 1is

assumed to be given by



38

r
V=g An() (80)

An 18 then the amplitude of the doflection function L and £ = o/p
as before, Substituting the deflacted shepo (80) into the exprese

sion (28) for the total energy ylelds
22
= (/L) j;[ alds - § [ Za v, g1%e r

+ (1/24)\) I[ Z 8pupey] 2ag - B[ 5 anwng-_- . (81)
where
= A /RE (62)
If Wye and W, ¢ form orthogonal sets such that
1
{wnzwmzdz =0 n#n
and (83)

1
_I “nggmgdE=0 nFm
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The total energy 1is reduced to

1 1 2
r r 2 2
= (Vh-){:i: (e, -{ w 4E] - }§ [ag _1I wnEdE}
1
+ (1/24)) z e, [ w2eeae - " z (82w, ) = o] (81)
-1

The equilibrium condition 1is

A" _

which leads to r equations of the form

r
(N/2) f (e,

b
fﬁdt:]
-1

e
nﬂ
20
wp-
My
';

1 1 1
2 2
: ‘["ndﬁ - oy Iw,,gd: + (11200, [ W2t - PIw ) L om0 (8

The following notation is introduced:

1 1
Cln = J“"ndE cZn = { Yn (dg
(86)
1 2
C3n = f"nEEdE Oyn = [wpl _
-1 E=0

The equilibrium equations for symmetrical deformation of the arch

can then be written as



1,0
(V2% a0 -iz 20 Cyp= 8 0o #(1A2Na C, =P¥C, =0 (87)
an 1n & 2n 1n* 8y ij 9,C3n~P Oy

The eriterion obtained previously for the occurrence of
anti-symmetrical buckling (66) remains essentially unchanged, The
only modification would be that the more general expression (80)
would be used to represent the pre-buckled state, This generali-
zation of (66) leads to

r 1 r 5
z [a k[umcm - /2 512 [ = we (88)
1 1

n

where
j" 2 ¥ 2
K= J "aiﬁ(z/\f[‘ wu:dE (89)

and LA is the anti-symmetrical buckled shape, Upon using the
expressions (86) for the constants, the criterion for anti-
symmetrical buckling becomes

r
zZ al

r 2 2
2 8501n ~ (1/2)§ 8 0y, = K/6X (90)

To obtain the anti-symmetrical mode buckling load the set
of equations (87) has to be solved simultaneously with (90),
Substituting (90) into (87) ylelds

(K/12N)[Cy, = 8,Cpn] + (1/12”%03:1 - Pf;c,.m =0 (91)

which can be solved for an
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oy = (12KP7C ) = KC))/(Cy = KOp) (92)

This value for a, can now be substituted back into the buckling
eriterion (90),

#2 3 2 #y o
(arp® 2 [Cop G/ (O3 = KC, )] - (2UNED) 2 161,030/ (C3nic, 1)
r
+ (8/3%°) + K 2 [0],(205, = K0p;)/ (03, = Kopq)*) = 0 (93)

This can be written as
3\ 2 4 2 =
(12)!&) Di - ahkxTDZ + (K/3X°) + KD3 0

and therefore the asymmetrical mode buckling load is given by

-~

- !
Pp = (1/12n{fD2/D1> * [(Dy/D))° = (KDy/Dy) - (x/3>?1>1)1? (L)

where

r cz 2

]
b

HMg  p.ln

i

D, [°1n°3n°un/(°3n - Kc2n)2] (95)

2
(2C5, = KCy,)/(Cqyp = Ky )7)

W

n

The second buckling mode can therefore be determined fairly
easily by evaluating the C's and D's and solving a quadratic for
12 P¥,

For a clamped arch a general displacement function that

satisfies the boundary conditions 1is



w, = #{1 + cos n ®f]), n odd
(96)

w, = #(1 - cos n nE], n even

This will also satisfy the orthogonality relations (83), The

constants (86) can then be readily evaluated,

-

Ci,, =1

1ln
Cop = nzn‘z/u S alln (97)

C3n = niteliyy

J
n odd

1’
=
%\ 0, n even

The quantity K is the coefficient in the equation for the

second mode buckling load for a clamped column, namely,
K = 20,16 or 2,0426n°

The constants (95) then become

D, = :2": [u/n2n6(n2-2.0l+26)2], n odd

=0, n even

D, =%[u/n‘*(n2-2.ou26)2], n odd (98)
=0, n even

D, = % [4(2n%-2,0426)/nPn*(n2-2,0426)%] a1l n
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The values of these constants are for
r = 1:

4 x o.921o/n6, D, =L x 0.9210/1\‘*, Dy =~ 4 x o.oo387/u“

o
-
L]

r =2
D, and D, unchanged and D = b x 0.3&98/nu

For r = 6, which is sufficient to determine the constants

to 3 figures after the decimal point, the results are

D, =4 x 0.9233/7°, D, =4 x 0.9436/7%, Dy =L x 0.3960/n*

The anti-symmetrical transitional buckling load can then

be readily obtained from (94) for these three cases

r=1
Pg = (n?/le){’l + [1,0858 - (0.18!.;.71:""/%2]{L

r=1 7
* = (n2/12>\)f1 + [0,2245 - (o.lﬁlmt“/ka)li

Fp L. i

v

r =6 .
By = (na/IZX){l.OZN + [0,1685 - 0.18u3n‘*/k2]*f

These three functions are plotted in Figure 13, There 1is
an appreciable difference between the curves for 1 and 2 terms,
but not much between the curves for 2 and 6 terms,

Determining the upper buckling load for the symmetrical

mode, P, 1s somewhat more involved, It is therefore only attempted

U
forr=1andr =2, For r =1 the upper buckling load is obtained
{mmediately by substituting the constants (97) into the expression

for one term obtained previously (50) observing that



Cin ¥ C» Cop = C3s C3pn = Cg» Cun = Cy when n = 1

This gives /2
3
= (12/12\) + (ML) [(L/34) - (1/922)) (99)

The energy load for a single term is obtained by substitute
ing the values of the constants into (45) thereby obtaining

P o= /120 (100)

The next approximation, r = 2 will be considered, From the

equilibrium equations (87) it is seen that

gm-(a cgn/mx) o (amjm/IZ)\)
1n

8m 2m

which can be solved for ‘n in terms of &, and the load P*

= PG 00n~C1n Oy~ 8n G Com) * 2(CyCap/22N)

'P*Cancum + (‘1/12’\)(°2n°3m'°3n°2m) + (CypCap/12N)

For r = 2 this reduces to

n

e, = = (k) - F')/(k, + P¥) (101)

where
k, = a/ibu, k, = 1/ul(a/16) - (1/3)],

(102)
a = nzal, and p = k/ua
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The first of the equilibrium equations (87) can then be written

as
[Pa, + Pa, = (a24/8) = a2n/2)] [1 - (ayx%/4)]
+ (ayn0/2402)=(2:2F*/0) = 0 (103)

Upon substitution for n?aa from (101) and the use of the notation

(102), a relation between a and P¥ can be obtained, This 1s
{[a-(aa/enucz + P*)2u (kg =P, + P*)-(I/Z)(kl-P*)z}[l-(a/u)]
+ [(a/2f)-(2P%/ W)k, + P)Z = 0 (104)

The load deflection relation for symmetrical deformation is
given explicitly by this expreasion, Because of the complexity of
the'expression, the load deflection curve can be best determined

by first introducing new variables a and p defined as follows:
a=a =4 p = L4BuP - i (105)

Equation (104) can then be written as

K, + K\p + K2p2 - up3 =0 (106)
where

K, = 8[36 + 3,°(95°- 116)]

K, = Bo(-12 + 3p°(68° - 120)] (107)

K, = a(-20 + 3,2(3 - 20)]

The solution to (106) is antisymmetrical in p about the

origin a@ = p = 0, The energy load is therefore immediately
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obtained as
Py = O
or from (105) and (102)
Pt = /12

The energy load is therefore unchanged by going from 1 to 2 terms
in the expanaion for the deflected shape, The addition of the
second term is found not to alter the relation between the load
and the bending deformation and the symmetry of the membrane
stresses, The infiuence of the second term is therefore similar
to that of a type A imperfection., This result would probably not
be true by the inclusion of more terms in the deflected shape
function, but it is believed that the consideration of additional
terms will not have any significant effect on the energy load,
The upper buckling load for the symmetrical mode is most
easily obtained by plotting p against a, and determining the valre
of p at the limit point from the resulting plot. This value can
be transformed back to the original coordinates using (105) and
(102), Performing this procedure for a range of the geometric
parameter X, @ plot of Pg against A is obtained, This is shown
in Figure 13 along with the energy load, the one term approxima-

tion for Pg, and the transitional buckling load N
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(f) Experiments on Elastic Snap Buckling of Clamped Arches,

The experimental part of the study was concerned with
obtaining complete load deflection curves for a wide range of
geometries of clamped arches, It was of special interest to obtain
the unstable regions of these curves and to investigate the mode
shapes at various stages of loading, The experimental setup was
constructed so that creep snap buckling tests as well as elastic
tests were pnossible, In this section only the elastic tests con-
ducted at room temperature are considered, Figure 1l shows a
schematic drawing of the apparatus and Fig., 15 and 16 are photo-
graphs of the actual apparatus,

The arch was clamped between two fixing blocks at each end,
It was necessary to make a series of these blocks of different
angles to cover the range of geometry, The fixing blocks were
bolted to a very stiff auxiliary frame which rested freely upon the
main supnort frame, This was necessary to allow the auxilliary
frame to expand freely for the high temperature tests, To ensure
complete rigidity of the clamping, the fixing blocks were backed
up against two other blocks which were bolted and doweled to the
auxiliary frame,

The deformationa of the arch were measured at several points
with dial gauges, These were arranged outside the furnace with
extension rods resting on the arch, The extension rods were counter-
weighted with springs to minimize the effect of their welght on the
behavior of the arch, Experiments with only the center gauge and

all the gauges confirmed that this was achieved,
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The load was applied at the center through a knife edge
fixture and a loading rod extending out of the furnace, To obtain
the complete load deflection curve, a system of a jack and a strain
gauge instrumented load cell in series with the applied load was
utilized, The load, which was greater than Py, rested upon the
Jack and the entire load deflection relation was obtained by lower-
ing the jack in small increments - in effect a deflection controlled
procedure = and noting the load supported by the arch from the load
cell and the corresponding deflections from the dial gauges,

The specimens were made from 2024 T4 aluminum alloy and were
one inch wide, three sixteenths inches thick, and nominally
34 inches between supports, They were rolled into a circular arc
using a three roller sheet metal roll, The geometry was determined
by measuring the central height after the specimens were bolted into
the auxiliary frame; The clamping resulted in a slight pre-stress-
ing for some of the specimens, particularly at the lower values of
A, as it was very difficult to get the angle of the fixing blocks
to coincide exactly with the base angle of the specimens,

In all, 14 specimens were tested for A ranging from 3.69
to 16,25, Table I gives the geometries and the buckling loads ob-
tained, All the experiments were completely elastic as the speci-
mens were found to return to their original shape to within a few
thousandths of an inch upon unloading, The lower buckling load of
the clamped arch is greater than zero and therefore the arch cannot
remain in the buckled state when the load 1is removed,

The experimental buckling loads (the maximum points in the

load deflection curves) are compared with the theoretical results
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in Fig, 13, Except for the two points with the lowest values of
A, the agreement with the two term solution is very good, It is
probable that the disagreement in those two cases was due to the
clamping stresses,

Flg, 17 shows complete load = central deflection curves for

three values of A along with corresponding theoretical predictions,
The complete theoretical load deflection curves (for 1 and 2 terms)
are shown for the )\ = 11,62 case, Although the general trends and
especially the buckling load values are in close agreement, the
curves by themselves are not conclusive as to the buckling mode

in the unstable region, It 1is noted, however, that for large \,

PU 1s appreciably greater than RT and the experiments agree, as
expected, with P,

Although the anti-symmetrical mode governs the buckling
process for A > 10,6, the actual amplitude of the anti-symmetrical
mode is relatively small and could be readily overlooked in a super-
ficial test, The shapes at buckling for various arches are shown
in ig, 18, The increased waviness in the shapes for the larger
N\ values and the corresponding need for more than one term in the
theoretical golution can be readily noted, The asymmetry of the
shapes can be noticed for the large \ values but is very small
compared to the overall symmetrical deformation, Fig, 19 shows the
deflected shapes for two values of A at the upper, lower, and
middle buckling points, Even at the middle buckling position, when
the anti-symmetrical amplitude 1is largest, the asymmetry is small
for the N = 16,25 case and almost non-existent, as expected, for

A = 5,35, These resvlts show that although the buckling of a
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system may be governed by anti-symmetrical modes, these modes may
not be readily detectable except by very careful experimentation,
These observations are believed to be pertinent to the related prob-
lem of the buckling of spherical caps,

(g) General Discussion of Results for the Clamped Arch,

1, The experimental results were in good agreement with the
general theoretical predictions and showed that for large A buckling
1s governed by anti-symmetrical modes ~ the buckling load corres-
ponded to the transitional buckling values P@. The amplitudes of
the anti-symmetrical modes were, however, relatively small, As
expected, the energy load was a lower bound on the experimental
buckling loads, and could have served to give reasonable predictions,
2, Although a change in buckling mode occurs (theoretically)

at \ = 10,6, the transition 1s a smooth one and the buckling load-
geometry (A), curve is also smooth, The behavior is therefcre un-
like the sharp divisions obtained for plate buckling, and is a
further reason for the difficulty in detecting bucklir.g mode changes,
3, The ceneral features of the nonlinear behavior of the
clamped arch were found to be similar to those of the simple mech=-
anical model and to conform with the general results obtained for
such nonlinear systems,

4 The one term solution gave the proper overall behavior but
was appreciably in error on the actual magnitudes especially for

the higher values of N\, The two term solution gave fairly good
results - the additional corrections to the six term solution for

the anti-symmetrical buckling load are relatively small,
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Se The energy load was the same for both the one and two term
solutions, Although the energy load would not be unchanged in the
complete solution, there are strong indications that the energy load

is a relatively insensitive function of the buckled shape,



Creep Buckling of Arches,

The creep buckling problem was studied as an important prob-
lem in its own right and as an example in a difficult field where
the energy load concepts may have application, The possibility that
the energy load, as defined for the initial geometry, may be a lower
bound on the load required for snap buckling in the presence of
creep was the point of particular interest, However, it becams
evident early in the work that the energy load based on the initial
geometry was not a lower bound in the above sense, The only signifi-
cance of the energy criterion in creep problems, at least for the
model and the arch,is that the "membrane" forces corresponding to
the original energy load must be exceeded before buckling can occur,

Considerable insight into the snap creep buckling problem
can be obtained from the analysis of the simple model of Fig, 2,

A related study was performed by Hult [18], but his model did not
contain the central spring which would correspond to the bending
rigldity in the case of the arch, The energy load for Hult's model
is therefore identically zero for all geometries and cannot be used
to investigate the significance of the energy load in creep snap
buckling problems, In addition Hult's model is statically deter-:
minate whereas the force distribution in the more general model
depends upon the relative stiffnesses and the creep law as well as
upon the geometry,

The problem of creep snap buckling can be formulated as the
determination of the load deflection curve for superimposed loading
at successive stages of creep of the system, When the geometry and

force distribution is such that the load increment required to reach
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either Py or P, (whichever is lower) becomes zero, then snap °
buckling will occur, The analyslis is based upon assuming that the
superimposed load deflection curve can be calculated from elastic
theory, The inoremental stresses and strains due to buckling are
taken to be elastic, Thils assumption agrees with the commonly used
creep laws since the snap buckling process is relatively rapid,

The equilibrium equation for the model of Fig, 2, as given
by (2), can be written with slightly greater generality as

P=F + 2T(a=b)/1 (108)

where F 1s the force in the compressed spring, and -the

other symbols are as defined previously, The strain in the arms
is given by (3), In the following analysis it is convenient to
consider compressive strains as positive, Both the arms and the
spring are considered to creep under the applied forces,

The model is subjected to a constant applied load PB. The
forces in the arms and in the spring, and the apex deflection at
any later time are designated Tc' Fo and bo respectively, These
quantities are also related through (108), The load daflection
relation for an additional load P can now be obtained,

The total force in the spring due to P, + AP 1is
F=F, +kbd=,)

where b is the total displacement from the unloaded position, From

the strain expression (3), the total force in the arms is

T =Ty + (AE/2L°)(b=b,)(2a=d=0 )
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The total forces must also satisfy the overall equilibrium equation
(108), Upon substitution of the above expressions for F and T into
(108) and subtracting the equilibrium conditions for the original
loading state, the load deflection relation for the additional load
AP is obtained as

AP = [k=(2T /L)]1(8=b ) + (AE/L?)(a-3)(3-5 )(2a-0~3,) (109)

AP is plotted against & in Fig, 20, This is the instanta-
neous load deflection curve for the system at any stage of creep,
The curve again consists of a straight line and a curve anti-

symmetrical about 3 = a, The energy load is therefore
APe = [k-(ZTo/L)](a-bo) (110)

For the fully elastic case this result agrees, as expected, with
that obtained by subtracting (2) from the elastic energy load,
P, = ka, (9), The energy load for additional loading, AP,, is

zero when
T, = kL/2 (111)

which, from (9) and (2), is also the value for the force in the
arms (the "membrane" force) at the elastic energy load Pye The
condition bc = a 18 a special case for the vanishing of AP;.

The upper buckling load for the additional load AP is
found by setting d(AP)/dd = 0, This ylelds the following quadratic
equation for the total deflection bU at buckling



55
382 - baby = 82 + 2ad, + 2a° + (L3/AB)[(k=(27,/L)] = O

The upper buckling load condition will be reached by the system
with no additional load being required (AP = 0) when bU = bo’ or
when

T, = (kL/2) + (AE/LZ)(bo - a) (112)

This has an absolute minimum at T = kL/2, The minimum
value that the force in the arms could have at the upper buckling
point for any arbitrary loading path is therefore the same as at
the energy load for the fully elastic case,

The transitional buckling condition 1s reached when the
force in the arms equals the Euler buckling load, T = Tge For snap
buckling to occur for additional loading above Po’ the additional
-oad must be greater than APQ, (110)., The total force in the arms
must therefore exceed kL/2 if buckling of the arms is to lead to
snap buckling and not to only a bifurcation of equilibrium with a
continuously increasing deflection, Fig, 21 shows the ocombinations
of the force in the arms and the displacement that will cause in-
stability, The relative values of the different criteria depend
upon the original geometry and the elastic constants, but not on
the creep properties, The relation between Tc and bo for com=
pletely elastic deformation is given by (4) and is also plotted in
Fig, 21, The system described by Fig, 21 would buckle under elastic
loading when the elastlc curve crosses the curve for the limit
point (the upper buckling load) condition, point Q.

For the creep problem the system is first loaded elastically

up to some point A along the elastic response curve 0Q, The
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system then creeps under the constant load with consequent changes
in the force in the arms and iIn the deflection, The relation be=-
tween these two quantities during creep (path AB) depends upon the
particular creep law and would result in snap buckling when the
values agree with one of the buckling criteria determined previous-
ly, e.g., point B in Fig, 21, Although the law for metallic creep
is nonlinear, the principal features of the problem can be most
easily obtained from the study of linear viscoelastic behavior,

The creep laws for the spring and the arms of the model

can be taken as

bc = (Fo/k) + XFO (113)

e = (L/A(T/E) + pT,) (114)

where \ and p are material constants,
Upon differentiating (3) (with the sign changed) with
respect to the time, the strain rate in the arms can be obtained

as a function of the displacement,
[ ] 2 [ ]
e = (1/L°)8 (a=b,)
which, upon substitution into (1ll), gives
bo(a=d,) = (L2/A)((T,/E) +puT,) (115)

Differentiation of the equilibrium equation (108) with

respect to the displacement bc gives
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ch ch
T = (2/L)[T°- (a-bc) IE) (116)
¢ °
since the applied load P° is constant during the creep process,

Using the relationship

[ [ 4 dF°
Fo = bc T (117)
)

in (113), and solving for the displacement rate gives
[ d dFo
5, = \F,/[1-(1/k) m:] (118)

aF
Substituting for F, and.asg from (108) and (116) leads to the fol-
()
lowing expression for the deflection rate:

. AP -(2M/L) (a=b )T,

8, = (119)

]
1- (2/%L)[T - (a=d ; )gp=]
]

Using the relation

. s 4T,
To =8 T~
o
equation (115) can also be solved for the deflection rate to give
2
. (L°%w/A)T
d = sl —r (120)
(a=d_)~(L2/AE) >
o K. - 3%

c
Buckling will take place when Sc becomes infinite or when

the denominators of (119) or (120) becomes zero, The buckling

criterion is therefore

aT
1-(2/kL)[T°- (a=3,) 3x=-) = O (121)
[« ]

2 Ty
(a=d,) - (L/AE) qg= =0 (122)
e
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Solving (121) and (122) simultaneously for T, gives the
same instability locus in the Tc' bc, plane as was obtalned pre-
viously (112) by the additional loading approach, The equation
for the creep locus in the T,, bc plane (path AB) can be obtained
by equating the two creep rates in (119) and (120), This gives

ar,  (Mp)(a=b ) [Po=(2T /L) (a=b )] +(2T L/AK) [T ~(kL/2)] (153)

B (M) (TP/AB) [P~ (2T /L) (a-b ) 1+(2T ;L/Ak) (a=b )

The required locus can be obtaned by integrating (123),
The initial condition is the solution for the initlal elastic load-
ing (point A of l'ig, 21), When noint B is reached the system will
snap through to some point C and creep again along CD, The time
necessary to reach B, the creep buckling time, can be computed
from (123) and (119) or (120),

The slope of the creep locus can be seen to be positive

over most of the To’ bo plane, The term

Pe-(ZTc/L)(a-bc)

in (123) is equal to F, from the equilibrium equation (108) and

is therefore always positive, The quantity (a-bc) is also positive
for bc < a, The denominator of (123) is therefore always positive
in the region 0 < b, <a for all T,, The first term in the
numerator of (123) 1s also positive in this region, The second
term is positive for T > kL/2 for all b,, and negative for

T, < kL/2, The slope of the creep locus in the Tos bb plane will

therefore be zero or negative for Tc < kL/2 when
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(k/p)(a-bc)[Po-(amo/‘L)(a-bc)]+(2Tcx./Ak)[Tc-<kL/2)] <0 (124)

or in the region below EF in Fig, 21, The lowest initial point
that will lead to buckling will be some point G for which ths
creep locus will be GF which passes through I with a horizontal
slope, Initial loading to any point above G will lead to buckling,
Since T, for point G would, in general, be less than the force in
the arms at the energy load, loads below the energy load could
result in snap buckling of the system,

7, H, H, Plan and C, Y, Chow [19] studied the creep buck-
ling of a simply supported low arch, To simplify the analysis
they assumed that the stress distribution across the arch is linear,
and that the stresses and displacements varied along the arch in
the same manner as in the elastic solution, The second of these
conditions %8 equivalent to assuming that the deformed shape is the
same in the elastic and creep precessecs,They solved the problem
using one symmetrical and one asymmetrical term in the deflection
function, For symmetrical creep deformations they found the arch
to behave in exactly the same manner as the model, They used a

creep law of the form

e = (o/E) + pd®
withn =1 and 3,

AS no experimental results were obtainable in the litera-
ture ,it was felt that some experiments would So very desirable in
view of the many simplifying assumptions mcde in the anal yses, A
series of tests were therefore performed on clamped arches in the

testing setup described prcviously, The material used was 5052=0
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aluminum, This was selected because at a constant elevated tem=
perature its mechanical properties are fairly constant with time,
The specimen was mounted in the oven at room temperature, One

end was left loose and free to exnand so that no thermal stresses
would be induced upon heating, After the oven and the specimen
had reached the test temperature, SOOOF, and held there for

2=3 hours to ensure uniform temperature, the specimen was clamped,
This was made poasible by putting extensions on the clamping bolts
reaching out of the oven, The dial gauges were then lowered and
the dead load applied at the arch center, In order to read all

the gauges and the time simultaneously, the gauges and a clock were
all photographed at regular intervals, This method proved success-
ful and the deflected shape right up to the time of buckling was
obtained for all the tests, In
Table II the loads and the geometry of the arches are shown with
the time required for buckling to occur, The geometries fall in
one group around A = 9 and one around A= 16, All the tests were
performed at loadc below the energy load based on the original
reometry,

It is interesting to note tests number 1 and l4 where the
geometry and the load is the same but the buckling times differ
by a factor of ten, One of the reasons for this can be seen in
Fig., 22, where the deflection just prior to buckling for the two
tests are plotted, Specimen number l, the one with the longest
buckling time, is almost symmetrical whereas number 1 has a large

unsymmetrical component,
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Fig, 23 shows the deflections for specimen number 7 at three
different times, In both Figs, 22 and 23 the importance of includ=-
ing a second symmetrical term in the displacement function is
brought out, This i1s the same as was found for the completely
elastic case, The inclusion of such terms would,however,make the
creep analyses quite complex, A simplification may be obtained by
replacing the arch with a structure of the kind shown in Fig, 24
with six elastic-creep hinges, The deflected shape of such a
system would closely resemble the real shapes shown in Figs, 22
and 23 for symmetrical deformations, Fig, 25 shows a buckled arch
which shows clearly the sharp hinges formed at the center and at
the ends, 7he possibility of an analyses on these lines will be
investigated in a later paper,
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Table I

Dimensions and Experimental
Buckling Loads of Claemped Arches

Height (inches) A = (B%R/t) P (1b,)
0,346 3,69 no buokling
0.346 3,69 9.0
0,502 5.35 12,15
0.552 5.89 13,70
0,705 7.52 18,10
0,751 8,01 20,85
0,885 9.4 21,30
0.890 9.50 23,90
1,080 11,51 28,45
1,090 11,62 29,65
1,236 13,15 36,20
1,288 13,75 33,30 !
1,430 15.25 42,00
1,522 16,25 39.50

Horizontal distance between ends = 3l inches
width = 1 inch; Thickness = 3/16 inch
Material: 2024-T4 Aluminum alloy
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FiG. | TYPICAL LOAD DEFLECTION CURVE FOR SYSTEM

THAT EXHIBITS SNAP BUCKLING.
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FIG.2 MODEL TO EXIBIT SNAP BUCKLING.
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FIG. 4 GRAPHICAL DETERMINATION OF ENERGY LOAD FOR THE MODEL.
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FIG.6 LOAD DEFLECTION CURVE FOR THE MODEL
SHOWING NON-~SYMMETRICAL BUCKLING PATH,
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FIG.7 GENERALIZED LOAD DEFLECTION CURVE.

FiG.8 SYMMETRIC VARIATION OF MEMBRANE STRESSES WITH DEFLECTION,
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FIG.9 MEMBRANE STRAIN ENERGY VARIATION FOR SYSTEMS
SHOWING MEMBRANE STRESS SYMMETRY.

FIG. 10 CLAMPED CIRCULAR ARCH UNDER CENTRAL CONCENTRATED LOAD.
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FIG. Il LOAD DEFLECTION CURVE FOR ARCH SHOWING
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FIG. 15 APPARATUS FOR ELASTIC AND CREEP
BUCKLING TESTS OF ARCHES.
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FIG.20 LOAD DEFLECTION RELATION FOR ELASTIC LOADING
BEYOND AN INITIAL STRESS STATE.
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FIG.23 CHANGE OF DISPLACEMENT WITH TIME.
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FIG.24 SIMPLIFIED ARCH.



‘SON3 3HL ANV H3UIN3D 3HL 1V S39NVHD 3YNLVAYND dJdUVHS
ONIMOHS SMD20718 ONIXId ANV S'ON N3WIO3dS d33y¥0 a3mona Se ld




DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS ISSUED UNDER
Contract Nonr-562(20), Task Nr 06L-42L

Chief of Naval Research
Department of the Navy
washington 25, D.C.
Attn: Code 438

Code U463

Commanding Officer
Officer of Naval Research
Branch Office

495 Summer Street

Boston 10, Massachusetts

Commandi ng Officer

Office of Naval Research
Branch Office

John Crerar Library Building
86 E. Randolph Street
Chicago 11, Illinois

Commandin Officer
Office of Naval Research
Branch Office

346 Broadway

New York 13, New York

Commanding Officer
Office of Naval Research
Branch Office

1030 E. Green otreet
Pasadena, California

Commanding Officer

Office of Naval Hesearch
Brancn Office

1000 Geary OStreet

San Francisco, California

Commanding Officer

Office of Naval Research
Navy #100, Fleet Poat Office
New York, New York

Director
Naval Research Laboratory
Washington 25, D.C.
Attn: Tech. Info. Officer
Code 6200
Code 6205
Code 6250
Code 6260

(1)

(1)

(1)

(1)

(1)

(25)

Armed Services Technical
Information Agency

ATTN: TIPCR

Arlington Hall Station

Arlington 12, Virginia (10)
Office of Technical Services
Department of Commerce
Washington 25, D.C. (1)

Office of the Secretary of
Defense

Research and Development Division

The Pentagon

Washington 25, D.C.

Attn: Technical Library (1)

Chief
Armed Forces Special Weapons
Project

The Pentagon

Washington 25, D.C.

Attn: Technical Information

Division (

Weapons Effects Div. (
Specisl Field Projects
Blast and Shock Branch

2)
1)
(1)
(1)
Office of the Secretary of

the Army
The Pentagon

Washington 25, D.C.
Attn: Army Library (1)

Chief of Staff

Department of the Army

washington 25, D.C.

Attn: Development Branch
Res. and Dev. Division(1)
Research Branch
Res. and Dev. Division(1)
Special Weapons Branch
Res. and Dev. Division(1)

Commanding Officer
Engineer Research Development
Laboratory

Fort Belvoir, Virginia (1)



Nonr-562(20) Distribution List

Office of the Chief of Ordnance

Department of the Army

Washington 25, D.C.

Attn: Research and Materials
Branch

(Ord. Res. and Dev. Div.) (1)

Office of the Chief of Engineers
Department of the Army
kashington 25, D.C.

Attn: ENG-HL Lib. Br., Adm, Ser,
Div, (1)

ENG"WE Erlgo Div., CiVil
Works (1)

ENG-EB Prot. Constr. Br.,
Eng., Div., Mil.

Constr., (1)
ENG-WD Planning Div. Civil
Works (1)

ENG-EA Stmc. Br.. &‘8. Div.’

Mil. Constr. (1)

ENG=NB Special Engr. Br,.,
Eng. Res. and Dev.
Division (1)

Office of the Chief Signal Officer

Department of the Army

washington 25, D.C,

Attn: Engineering and Technical
Division (1)

Commanding Officer

hatertown Arsenal

Watertown, Massachusetts

Attn: Laboratory Division (1)

Commanding Officer

Frankford Arsenal

Bridesburg Station

Philadelphia 37, Pennsylvania
Attn: Laboratory Division (1)

Office of Ordnance Research

2127 Myrtle Drive

Duke Station

Durham, North Carolina

Attn: Division of Engineering
Sciences (1)

(2)

Commanding Officer

Squier Signal Laboratory

Fort Monmouth, New Jersey

Attn: Components and Materials
Branch (1)

Chief of Naval Operations
Department of the Navy
Washington 25, D.C.

Attn: Op 37 (1)

Commandant, Marine Corps
Headquarters, U.S. Marine Corps.
Washington 25, D.C. (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 312

Code 376

Code 377

Code 4420

Code 423

Code 442

NN - = = 1O
Nt N St Sat? it =

Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.
Attn: AE-4

AVe3y

AD

AD-2

TD-42

RS-

RS-

S~ S P s S o, P
O el
s s = St gt “u?

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
Attn: Ad3

Re

Res

Reu

ReSS

ReS1

Ren

Aﬁaﬁaﬁﬂ
o e R N
Nt s’ S Vs Sas? ot



Nonr-562(20) Distribution List

Oaief, Bureau of Yards and Docks
Bepartment of the Navy
¥ashington 25, D.C,

Attn: Code D-202 (1;
Code D=202.3 (1
Code D-220 (1)
Code D=-222 (1)
Code D-410C (1)
Code D-|}40 (1)
Code D=500 (1)

Commanding Officer and Director
David Tayler Model Basin
Washington 7, D.C.

Attn: Code 140 (1)
Code 600 (1)
Code 700 (1)
Code 720 (1)
Code 725 (1)
Code 731 (1)
Code 740 (1)

Commander

U. S. Naval Ordnance Laboratory
White Oak, Maryland

Attn: Technical Library (2)
Technical Evaluation
Department (1)

Director

Materials Laboratory
hew York Naval Shipyard
Brooklyn 1, New York (1)

Commanding Officer and Diprector
U, S. Naval Electronics Laboratory
San Diego 52, California (1)

Orficer-in-Charge

Naval Civil Engineering Research
and Evaluation Laboratory

U, S. Naval Construttion

Battalion Center

Port Hueneme, California (2)

Director

Naval Air Experimental Station

Naval Air Material Center

Naval Base

Philadelphia 12, Pennsylvania

Attn: Materials Laboratory (1)
Structures Laboratory (1)

(3)

0fficer-in-Charge

Underwater Explosion Research
Division

Norfolk Naval Shipyard

Portsmouth, Virginia

Attn: Dr. A, H, Keil (2)

Conmander
U, S, Naval Proving Grounds
Dahlgren, Virginia (1)

Superintendent
Naval Gun PFactory
MWashington 25, D.C. (1)

Commander '

Naval Ordnance Test Station

Inyokern, China Lake, Califommia

Attn: Physics Division (1)
Mechanics Branch (1)

Commanding Officer and Director

Naval Engineering Experimental
Station

Annapolis, Maryland (1)

Commanding Officer
USNNOEU
Kirtland Air Force Base
Albuquerque, New Mexico
Attn: Code 20
{Dr. J. N. Bremnen) (1)

Superintendent
Nava] Post Graduate School
Monterey, California (1)

Commandant

Marine Coxrps School

Quantico, Virginia

Attn: Director, Marine Corps
Development Center (1)

Commanding General

U, S. Air Force

Washington 25, D.C,

Attn: Research and Development
Division (1)



Nonr-562(20) Distribution List

Commander

Air Material Command

Wright-Patterson Air Force Base

Dayton, Onio

Attn: MCREX-B (1)
Structures Division (1)

Commander
U. S. Air Force Institute of
Technology
Wright-Patterson Air Force Base
Dayton, Onio
Attn: Chief, Applied Mechanics
Group (1)

Director of Intelligence
Headquarters, U, S, Air Force
Washington 25, D.C,
Attn: P. V, Branch

(Air Targets Division) (1)

Commander

Alr Force Office of Scientific
Research

t.ashington 25, D.C,

Attn: Mechanics Division (1)

U. S. Atomic Energy Commission
vWashington 25, D.C.
Attn: Director of Research (2)

Director
National Bureau of Standards
Washington 25, D,.C.

Attn: Division of Mechanics (1)
Engineering Mechanics
Section (1)
Aircraft Structures (1)

Commandant

U.S. Coast Guard

1300 E. Street, N. W,

Washington 25, D,C,

Attn: Chief, Testing and
Development Division (1)

U. S. Maritime Administration
General Administration Office
Bulilding
Washington 25, D.C.
Attn: Chief, Division of Pre-
liminary Design (1)

(4)

National Aeronautics and
Space Administration
1515 H Street, N. V.
Washington 25, D.C.
Attn: Loads and Structures
Division (2)

Director
Langley Aeronautical Laboratory
Langley Field, Virginia

Attn: Structures Division (2)
Director

Forest Products Laboratory
Madison, Wisconsin (1)

Civil Aeronautics Administration
Department of Commerce
Washington 25, D.C,

Attn: Chief, Aircraft Engineer-

ing Division (1)
Chief, Airframe and
Equipment Branch (1)

National Sciences Foundation

1951 Constitution Avenue, N.W.

Washington, D.C.

Attn: Engineering Sciences
Division (1)

National Academy of Sciences
2101 Constitut‘on Avenue
Washington 25, D.C.

Attn: Technical Director,
Committee on Ships
Structural Design (1)
Executive Seoretary,
Commi ttee on Undersea
Warfare (1)

Professor Lynn S. Beedle

Fritz Engineering Laboratory
Lehigh University

Bethlehem, Pennsylvania (1)

Professor R. L. Bisplinghoff

Dept. of Aeronautical Engineering

Massachusetts Institute of
Technology

Cambridge 39, Massachusetts (1)



Nonr-562(20) Distribution List

Professor H, H, Bleich
Department of Civil Engineering
Columbia University

New York 27, New York (1)

Professor B. A. Boley

Department of Civil Engineering
Columbia University

New York 27, New York (1)

Professor G. F., Carrier

Pierce Hall

Harvard University

Cambridge 38, Massachusetts (1)

Professor Herbert Deresiewicz
Dept. of Mechanical Engineering
Columbia University

632 W. 125th Street

New York 27, New York (1)

Professor D. C. Drucker

Division of Engineering

Browr. University

Providence 12, Rhode Island (1)

Professor A. C. Eringen

Division of Engineering Sciences
Purdue University

Lafayette, Indiana (1)

Professor W, Flligge
Dept. of Aeronautical Engineering
Stanford University
Stanford, California (1)

Professor J. N, Goodier

Dept. of Engineering Mechanics
Stanford University

Stanford, California (1)

Professor L. E. Goodman
Engineering Experiment Station
University of Minnesota
Minneapolis, Minnesota (1)

Professor M, Hetenyl
The Technological Institute
Northwestern University

Evanston, Illinois (1)

(5)

Professor P. G. Hodge

Department of Mechanics

I11inois Institute of Technolo?y
Chicago 16, Illinois (1

Professor N. J. Hoff

Dept. of Aeronautical Engineering
Stanford University

Stanford, California (1)

Professor W. H. Hoppmann, II
Department of Mechanics
Rensselaer Polytechnic Institute
Troy, New York (1)

Professor Bruce G. Johnston
University of Michigan
Ann Arbor, Michigan (1)

Professor J. Kempner

Dept. of Aeronautical Engineering
and Applied Mechanics

Polytechnic Institute of Brooklyn

99 Livingston Street

Brooklyn 2, New York (1)

Professor H. L. Langhaar

Dept. of Theoretical and
Applied Mechanics

University of Illinois

Urbana, Illinois (1)

Professor B, J., Lazan, Director
Engineering Experiment Station
University of Minnesota

Minneapolis 1li, Minnesota (1)

Professor E, H., Lee

Division of Applied Mathematics
Brown University

Providenc~ 12, Rhode Island (1)



Nonr-562(20) Distribution List

Profeasor Paul Lieber

Geology Department

University of California
Berkeley L, California (1)

Professor Hsu Lo

School of Engineering

Purdue University -
Lafayette, Indiana (1)

Professor R. D, Mindlin
Department of Civil Engineering
Columbia University

632 .. 125th Street

New York 27, New York (1)

Dr. A. Nadal
136 Cherry Valley Road
Pittsburgh 21, Pennsylvania (1)

Professor Paul M. Naghdi
Mech. Engin., Mechanics & Design
University of California
Berkeley L, California (1)

Professor \illiam A. Nash

Dept.of Engineering Mechanics
University of Florida
Gainesville, Florida (1)

Professor N. M. Newmark, Head
Department of Civil Engineering
University of Illinois

Urbana, Illinois (1)

Professor Aris Phillips
Department of Civil Engineering
15 Prospect Street

Yale University

New Haven, Connecticut (1)

Professor W, Prager

Computing Center

Brown University

Providence 12, Rhode Island (1)

Professor E. Reissner

Department of Mathematics

Massachusetts Institute of
Technology

Cambridge 39, Massachusetts (1)

(6)

Professor M. A. Sadowsky
Department of Mechanics .
Rensselaer Polytechnic Institute
Troy, New York (1)

Professor J. Stallmeyer
Department of Civil Englineering
University of Illinois

Urbana, Illinois (1)

Professor Elli Sternberg
Division of Applied Mathematics
Brown University

Providence 12, Rhode Island (1)

Professor S. P. Timoshenko
School of Engineering

Stanford University

Stanford, California (1)

Professor A, S. Velestos
Department of Civil Engineering
University of Illinois

Urbana, Illinois (1)

Professor Enrico Volterra

Dept. of Engineering Mechanics
University of Texas

Austin, Texas (1)

Professor Dana Young
Yale University
New Haven, Connecticut (1)

Professor Bernard W. Shaffer
Dept. of Mechanical Engineering
New York University

New York 53, New York (1)

Dr. John F, Brahtz

Southern California Laboratories
Stanford Research Institute

820 Mission Street (1)
South Pasadena, California

Mr. Martin Goland, President
Southwest Research Institute
8500 Culebra Road

San Antonio, Texas (1)

Mr. S. Levy

General Electric Research
Laboratory

6901 Elmwood Avenue

Pniladelphia 42, Pennsylvania (1)



Nonr-562(20) Distribution List

Professor B, Budiansky

Dept. of Mechanical Engineering
School of Applied Sciences
Harvard University

Cambridge 38, Massachusetts (1)

Professor George Herrmann
Department of Civil Engineering
Columbia University -

New York 27, New York (1)

Professor E. Orowan

Dept. of Mechanical Engineering

Massachusetts Institute of
Technology

Cambridge 39, Massachusetts (1)

Professor J. Ericksen

Mechanical Engineering Department
Johns Hopkins University
Baltimore 18, Maryland (1)

Professor T. Y. Thomas

Graduate Institute for Mathematics

and Mechanics
Indiana University
Bloomington, Indiana (1)

Professor Joseph Marin, Head

Department of Engineering Mechanics

College of Engineering and
Architecture

The Pennsylvania State Universit

University Park, Pennsylvania (1¥

Professor Robert L. Ketter
Department of Civil Engineering
University of Buffalo

Buffalo i, New York (1)

Professor W, A, Shaw

Department of Mechanical Engineering

Alabama Polytechnic Institute
Auburn, Alabama (1)

Mr. K. H. Koopman, Secretary
Welding Research Council of
The Engineering Foundation
29 W 39th Street
New York 18, New York (2)

(7)

Professor Welter T, Daniels

School of Engineering and
Architecture

Howard University

Washington 1, D.C. (1)

Professor P. S. Symonds, Chairman
Division of Engineering

Brown University

Providence 12, Rhode Island (1)

Professor Nicholas Perrone
Engineering Sclence Department
Pratt Institute

Brooklyn 5, New York (1)

Commander

Wright Alir Development Center
Wright-Patterson Alr Force Base
Dayton, Ohio

Attn: Dynamics Branch (1)
Aircraft Laboratory (1)
WCLSY (1)

Dr. Edward Wenk, Jr.

Executive Secretary

Federal Council for Science & Technology
The White House

Washington, D. C. (1)

Dr. H. G. Hopkins

War Office

Armament Research and Development
Establishment

Fort Halstead

Sevenoaks, Kent, England (1)

Professor J. E. Cermak
Department of Civil Engineering
Colorado State University

Fort Collins, Colorado (1)

Professor W, J. Hall

Department of Civil Engineering
University of Illinois

Urbana, Illinois (1)

Professor R. Muki

Division of Mechanical Engineering
Keio University

Koganei-shi

Tokyo, Japan (1)



